题目内容
已知数列an满足a1=2,
|
1 |
n |
(Ⅰ)求数列an的通项公式;
(Ⅱ)若数列{
an |
n |
分析:(Ⅰ)由
=1+
,得
=
,故
=(
)n由此能求出an.
(Ⅱ)由Sn=1×21+2×22+3×23+…+n×2n,知2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,所以Sn=(n-1)×2n+1+2,由此能够推导出an-Sn>2.
|
1 |
n |
| ||
n+1 |
2 |
| ||
n |
| ||
n |
2 |
(Ⅱ)由Sn=1×21+2×22+3×23+…+n×2n,知2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,所以Sn=(n-1)×2n+1+2,由此能够推导出an-Sn>2.
解答:解:(Ⅰ)由
=1+
,得
=
•
,
∴数列{
}是以
为首项,
为公比的等比数列.
∴
=(
)n得an=n2•2n(n∈N+)(5分)
(Ⅱ)由条件知:
Sn=1×21+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得-Sn=2+22+…+2n-n×2n+1=
-n×2n+1
整理得:Sn=(n-1)×2n+1+2,(9分)
∴an-Sn-2=n2×2n-(n-1)×2n+1-4=[(n-1)2+1]×2n-4,
∵n∈N+,∴n=1时,an-Sn-2<0,∴an-Sn<2
n≥2时,an-Sn>2,∴an-Sn>2.(12分)
|
1 |
n |
| ||||
n+1 |
2 |
| ||
n |
∴数列{
| ||
n |
2 |
2 |
∴
| ||
n |
2 |
(Ⅱ)由条件知:
Sn=1×21+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得-Sn=2+22+…+2n-n×2n+1=
2(1-2n) |
1-2 |
整理得:Sn=(n-1)×2n+1+2,(9分)
∴an-Sn-2=n2×2n-(n-1)×2n+1-4=[(n-1)2+1]×2n-4,
∵n∈N+,∴n=1时,an-Sn-2<0,∴an-Sn<2
n≥2时,an-Sn>2,∴an-Sn>2.(12分)
点评:本题考查数列通项公式的求法和数列前n项和的求法,利用数列的性质比较比较an-Sn与2的大小,解题时要注意数列性质的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目