题目内容
在等差数列{an}与等比数列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,…),则an+1与bn+1的大小关系是分析:首先由等差数列和等比数列的性质可得a1+a2n+1=2an+1,b1b2n+1=bn+12,然后利用均值不等式求解即可.
解答:解:由等差数列和等比数列的性质可得a1+a2n+1=2an+1,b1b2n+1=bn+12,
∵a1=b1>0,a2n+1=b2n+1>0,
∴an+1=
≥
=
=bn+1.
故答案为an+1≥bn+1.
∵a1=b1>0,a2n+1=b2n+1>0,
∴an+1=
a1+a2n+1 |
2 |
a1a2n+1 |
b1b2n+1 |
故答案为an+1≥bn+1.
点评:本题在应用等差数列和等比数列的性质的同时,还用到了均值不等式,是一道综合性题目.
练习册系列答案
相关题目