题目内容

已知对任意平面向量,把绕其起点沿逆时针方向旋转q角得到向量,叫做把点B绕点A逆时针方向旋转q角得到点P.

(1)已知平面内点A(2,1),点B).把点B绕点A沿逆时针方向旋转后得到点P,求点P的坐标;

(2)设平面内曲线C上的每一点绕坐标原点O沿顺时针方向旋转后得到的点的轨迹是曲线,求原来曲线C的方程.

解:

(1) 设P(x,y),   则,   

,                  

由题意,得:

 

∴  x-2=6,y-1=2,  ∴x=8,y=3.                       

(2)设P(x,y)是曲线C上任意一点,绕绕坐标原点O沿顺时针方向旋转后,点P的坐标为(x’,y’),则:                 

      即           

又因为所以         

化简得: .                                   

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网