题目内容
设项数均为()的数列、、前项的和分别为、、.已知集合=.
(1)已知,求数列的通项公式;
(2)若,试研究和时是否存在符合条件的数列对(,),并说明理由;
(3)若,对于固定的,求证:符合条件的数列对(,)有偶数对.
(1);(2)时,数列、可以为(不唯一)6,12,16,14;2,8,10,4,时,数列对(,)不存在.(3)证明见解析.
【解析】
试题分析:(1)这实质是已知数列的前项和,要求通项公式的问题,利用关系来解决;(2)时,可求出,再利用
=,可找到数列对(,)(注意结果不唯一),当时,由于,即,可以想象,若存在,则应该很大(体现在),研究发现(具体证明可利用二项展开式,
,注意到,展开式中至少有7项,故,下面证明这个式子大于,应该很好证明了),这不符合题意,故不存在;(3)可通过构造法说明满足题意和数列对是成对出现的,即对于数列对(,),构造新数列对,(),则数列对(,)也满足题意,(要说明的是及=且数列与,与不相同(用反证法,若相同,则,又,则有均为奇数,矛盾).
试题解析:(1)时,
时,,不适合该式
故, 4分
(2),
时,
6分
当时,,,,
=
数列、可以为(不唯一):
6,12,16,14;2,8,10,4 ② 16,10,8,14;12,6,2,4 8分
当时,
此时不存在.故数列对(,)不存在. 10分
另证:
当时,
(3)令,() 12分
又=,得
=
所以,数列对(,)与(,)成对出现。 16分
假设数列与相同,则由及,得,,均为奇数,矛盾!
故,符合条件的数列对(,)有偶数对。 18分
考点:(1)数列的前项和与的关系;(2)观察法,二项展开式证明不等式;(3)构造法.