题目内容

将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 ________cm2

12.5
分析:根据正方形面积和周长的转化关系“正方形的面积=×周长×周长”列出面积的函数关系式并求得最小值.
解答:设一段铁丝的长度为x,另一段为(20-x),
则S=x2+(20-x)(20-x)=(x-10)2+12.5
∴由函数当x=10cm时,S最小,为12.5cm2
答:这两个正方形面积之和的最小值是12.5cm2
故答案为:12.5.
点评:本题考查了同学们列函数关系式以及求函数最值的能力.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网