题目内容
(2009•崇明县一模)设U={1,2,3,4,5},M={x|log2(x2-3x+4)=1},那么CUM=
{3,4,5}
{3,4,5}
.分析:由U={1,2,3,4,5},先求出M={x|log2(x2-3x+4)=1}={1,2},再求CUM.
解答:解:∵U={1,2,3,4,5},
M={x|log2(x2-3x+4)=1}={1,2},
∴CUM={3,4,5}.
故答案为:{3,4,5}.
M={x|log2(x2-3x+4)=1}={1,2},
∴CUM={3,4,5}.
故答案为:{3,4,5}.
点评:本题考查集合的运算,解题时要认真审题,由U={1,2,3,4,5},先求出M={x|log2(x2-3x+4)=1}={1,2},再求CUM.
练习册系列答案
相关题目