题目内容
设f(x)=|2-x2|,若0<a<b,且f(a)=f(b),则ab的取值范围是________
设f(x)=λ1(x2+x)+λ2x·3x(a,b∈R,a>0)
(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9
对于解方程x2-2x-3=0的下列步骤:
①设f(x)=x2-2x-3
②计算方程的判别式Δ=22+4×3=16>0
③作f(x)的图象
④将a=1,b=-2,c=-3代入求根公式
x=,得x1=3,x2=-1.
其中可作为解方程的算法的有效步骤为( )
A.①② B.②③
C.②④ D.③④
(1)设f(x)=(0<x<π),求函数f(x)的值域;
(2)对任意的,不等式恒成立,求的取值范围
设f(x)= 则不等式f(x)>2的解集为( )
A.(1,2)∪(3,+∞) B.(,+∞)
C.(1,2)∪ ( ,+∞) D.(1,2)
设a为实数,函数f(x)=2x2+(x-a)·|x-a|.
(1)若f(0)≥1,求a的取值范围;
(2)求f(x)的最小值;
(3)设函数h (x)=f(x),x∈(a,+∞),直接写出(不需给出步骤)不等式h(x)≥1的解集.