题目内容
如图,在半径为R的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:先明确是几何概型中的面积类型,分别求三角形与圆的面积,然后求比值即可.
解答:解:设落在阴影部分内接正三角形上的概率是P
∵S圆=πR2,SA=3×
×R2×sin1200=
R2
∴P=
=
=
故选D.
∵S圆=πR2,SA=3×
1 |
2 |
3
| ||
4 |
∴P=
SA |
S圆 |
| ||||
πR2 |
3
| ||
4π |
故选D.
点评:本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.
练习册系列答案
相关题目
如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设Sn为前n个圆的面积之和,则
Sn=( )
lim |
n→∞ |
A、2πr2 | ||
B、
| ||
C、4πr2 | ||
D、6πr2 |