题目内容

已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于x轴的直线上一动点,满足(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.
【答案】分析:(1)设M(x,y)是所求曲线上的任意一点,然后得出的坐标代入方程,化简即可求出轨迹C的方程.
(2)设出直线l的方程,以及与椭圆的交点坐标,将直线方程代入已知C的方程,联立并化简,根据根的判别式计算
解答:解:(1)设M(x,y)是曲线C上任一点,因为PM⊥x轴,,所以点P的坐标为(x,3y) (2分)
点P在椭圆上,所以,因此曲线C的方程是…(5分)
(2)当直线l的斜率不存在时,显然不满足条件
所以设直线l的方程为y=kx-2与椭圆交于A(x1,y1),B(x2,y2),N点所在直线方程为,…(6分)
,…(8分)
因为,所以四边形OANB为平行四边形,…(10分)
假设存在矩形OANB,则,即x1x2+y1y2=x1x2+k2x1x2-2k(x1+x2)+4=(1+k2)x1x2-2k(x1+x2)+4=0,
所以,…(12分)
设N(x,y),由,得
即N点在直线,所以存在四边形OANB为矩形,直线l的方程为y=±2x-2…(15分)
点评:本题考查圆锥曲线的综合运用以及轨迹方程的应用,通过对圆锥曲线知识的综合运用,考查学生的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网