题目内容
如右图所示,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)求三棱锥E—PAD的体积;
(2)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(3)证明:无论点E在边BC的何处,都有PE⊥AF.
【答案】
(1)三棱锥E—PAD的体积
V=PA·S△ADE=PA·=.
(2)当点E为BC的中点时,EF与平面PAC平行.
∵在△PBC中,E、F分别为BC、PB的中点,
∴EF∥PC,又EF⊄平面PAC,而PC⊂平面PAC,
∴EF∥平面PAC.
(3)证明:∵PA⊥平面ABCD,BE⊂平面ABCD,
∴EB⊥PA,
又EB⊥AB,AB∩AP=A,AB,AP⊂平面PAB,
∴EB⊥平面PAB,又AF⊂平面PAB,∴AF⊥EB,
又PA=AB=1,点F是PB中点,
∴AF⊥PB又∵PB∩BE=B,
PB,BE⊂面PBE,
∴AF⊥面PBE,
∵PE⊂面PBE,∴PE⊥AF.
【解析】略
练习册系列答案
相关题目