ÌâÄ¿ÄÚÈÝ
£¨2012•¶«³ÇÇøÄ£Ä⣩ֱÏßl1£ºy=kx+1-k(k¡Ù0£¬k¡Ù¡À
)Óël2£ºy=
x+
ÏཻÓÚµãP£®Ö±Ïßl1ÓëxÖá½»ÓÚµãP1£¬¹ýµãP1×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ1£¬¹ýµãQ1×÷yÖáµÄ´¹Ïß½»Ö±Ïßl1ÓÚµãP2£¬¹ýµãP2×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ2£¬¡£¬ÕâÑùÒ»Ö±×÷ÏÂÈ¥£¬¿ÉµÃµ½Ò»ÏµÁеãP1£¬Q1£¬P2£¬Q2£¬¡£¬µãPn£¨n=1£¬2£¬¡£©µÄºá×ø±ê¹¹³ÉÊýÁÐ{xn}£®
£¨1£©µ±k=2ʱ£¬ÇóµãP1£¬P2£¬P3µÄ×ø±ê²¢²Â³öµãPnµÄ×ø±ê£»
£¨2£©Ö¤Ã÷ÊýÁÐ{xn-1}ÊǵȱÈÊýÁУ¬²¢Çó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©±È½Ï2|PPn|2Óë4k2|PP1|2+5µÄ´óС£®
1 |
2 |
1 |
2 |
1 |
2 |
£¨1£©µ±k=2ʱ£¬ÇóµãP1£¬P2£¬P3µÄ×ø±ê²¢²Â³öµãPnµÄ×ø±ê£»
£¨2£©Ö¤Ã÷ÊýÁÐ{xn-1}ÊǵȱÈÊýÁУ¬²¢Çó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©±È½Ï2|PPn|2Óë4k2|PP1|2+5µÄ´óС£®
·ÖÎö£º£¨1£©¸ù¾ÝÖ±Ïßl1ÓëxÖá½»ÓÚµãP1£¬¹ýµãP1×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ1£¬¹ýµãQ1×÷yÖáµÄ´¹Ïß½»Ö±Ïßl1ÓÚµãP2£¬¹ýµãP2×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ2£¬¡£¬¿ÉµÃµãP1£¬P2£¬P3µÄ×ø±ê£¬´Ó¶ø²Â³öµãPnµÄ×ø±ê£»
£¨2£©È·¶¨Qn£¬Pn+1µÄ×ø±ê£¬ÀûÓÃPn+1ÔÚÖ±Ïßl1ÉÏ£¬¶ÔÆä±äÐΣ¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©Çó³öPµÄ×ø±ê£¬±íʾ³ö2|PPn|2Óë4k2|PP1|2+5£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨2£©È·¶¨Qn£¬Pn+1µÄ×ø±ê£¬ÀûÓÃPn+1ÔÚÖ±Ïßl1ÉÏ£¬¶ÔÆä±äÐΣ¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©Çó³öPµÄ×ø±ê£¬±íʾ³ö2|PPn|2Óë4k2|PP1|2+5£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º£¨1£©½â£ºÓÉÌâÒâ¿ÉP1(
£¬0)£¬P2(
£¬
)£¬P3(
£¬
)£¬¿É²ÂµÃPn(
£¬
)£®¡£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºÉèµãPnµÄ×ø±êÊÇ£¨xn£¬yn£©£¬ÓÉÒÑÖªÌõ¼þµÃµãQn£¬Pn+1µÄ×ø±ê·Ö±ðÊÇ£º(xn£¬
xn+
)£¬(xn+1£¬
xn+
)£®
ÓÉPn+1ÔÚÖ±Ïßl1ÉÏ£¬µÃ
xn+
=kxn+1+1-k£®
ËùÒÔ
(xn-1)=k(xn+1-1)£¬¼´xn+1-1=
(xn-1)£¬n¡ÊN*
ËùÒÔÊýÁÐ{xn-1}ÊÇÊ×ÏîΪx1-1£¬¹«±ÈΪ
µÄµÈ±ÈÊýÁУ®
ÓÉÌâÉèÖª x1=1-
£¬x1-1=-
¡Ù0£¬
´Ó¶øxn-1=-
¡Á(
)n-1£¬¡àxn=1-2¡Á(
)n£¬n¡ÊN*£®¡£¨9·Ö£©
£¨3£©½â£ºÓÉ
µÃµãPµÄ×ø±êΪ£¨1£¬1£©£®
ËùÒÔ2|PPn|2=2(xn-1)2+2(kxn+1-k-1)2=8¡Á(
)2n+2(
)2n-2£¬4k2|PP1|2+5=4k2[(1-
-1)2+(0-1)2]+5=4k2+9£®
£¨i£©µ±|k|£¾
£¬¼´k£¼-
»òk£¾
ʱ£¬4k2|PP1|2+5£¾1+9=10£¬
¶ø´Ëʱ0£¼|
|£¼1£¬¡à2|PPn|2£¼8¡Á1+2=10£¬
¡à2|PPn|2£¼4k2|PP1|2+5£®
£¨ii£©µ±0£¼|k|£¼
£¬¡àk¡Ê(-
£¬0)¡È(0£¬
)ʱ£¬4k2|PP1|2+5£¼1+9=10£®
¶ø´Ëʱ|
|£¾1£¬¡à2|PPn|2£¾8¡Á1+2=10£¬
¡à2|PPn|2£¾4k2|PP1|2+5£®¡£¨14·Ö£©
1 |
2 |
7 |
8 |
3 |
4 |
31 |
32 |
15 |
16 |
22n-1-1 |
22n-1 |
22n-2-1 |
22n-2 |
£¨2£©Ö¤Ã÷£ºÉèµãPnµÄ×ø±êÊÇ£¨xn£¬yn£©£¬ÓÉÒÑÖªÌõ¼þµÃµãQn£¬Pn+1µÄ×ø±ê·Ö±ðÊÇ£º(xn£¬
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
ÓÉPn+1ÔÚÖ±Ïßl1ÉÏ£¬µÃ
1 |
2 |
1 |
2 |
ËùÒÔ
1 |
2 |
1 |
2k |
ËùÒÔÊýÁÐ{xn-1}ÊÇÊ×ÏîΪx1-1£¬¹«±ÈΪ
1 |
2k |
ÓÉÌâÉèÖª x1=1-
1 |
k |
1 |
k |
´Ó¶øxn-1=-
1 |
k |
1 |
2k |
1 |
2k |
£¨3£©½â£ºÓÉ
|
ËùÒÔ2|PPn|2=2(xn-1)2+2(kxn+1-k-1)2=8¡Á(
1 |
2k |
1 |
2k |
1 |
k |
£¨i£©µ±|k|£¾
1 |
2 |
1 |
2 |
1 |
2 |
¶ø´Ëʱ0£¼|
1 |
2k |
¡à2|PPn|2£¼4k2|PP1|2+5£®
£¨ii£©µ±0£¼|k|£¼
1 |
2 |
1 |
2 |
1 |
2 |
¶ø´Ëʱ|
1 |
2k |
¡à2|PPn|2£¾4k2|PP1|2+5£®¡£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²é´óС±È½Ï£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿