题目内容
设函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101644832.png)
的图象经过点
.
(I)求
的解析式,并求函数的最小正周期和最值;
(II)若
,其中
是面积为
的锐角
的内角,且
,求边
和
的长.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101644832.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101660520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101675661.png)
(I)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101691524.png)
(II)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101722935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101738300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101769502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101785544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101800485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101816401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101831398.png)
解:(1)
函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101644832.png)
的图象过点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101675661.png)
函数的最小正周期
…………………4分
当
时,
的最大值为
,
当
时,
最小值为
…………………6分
(2)因为
即
∴
∵
是面积为
的锐角
的内角,∴
……………8分
由余弦定理得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232031022531077.png)
∴
…………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101847222.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101644832.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101660520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101675661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101909912.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101941409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232031019561310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101972191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101987479.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102003946.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102019447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102034344.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232031020501006.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102019447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102081358.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101722935.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232031021121118.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102128718.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101738300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101769502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203101785544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102206530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232031022211216.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102237499.png)
由余弦定理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232031022531077.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203102268522.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目