题目内容
点在椭圆上,求点到直线的最大距离和最小距离。
见解析
设,则
即,
当时,;
当时,
已知椭圆:()上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为,,点是右准线上任意一点,过作直 线的垂线交椭圆于点.
(1)求椭圆的标准方程;
(2)证明:直线与直线的斜率之积是定值;
(3)点的纵坐标为3,过作动直线与椭圆交于两个不同点,在线段上取点,满足,试证明点恒在一定直线上.