题目内容
已知命题:
①已知正项等比数列{an}中,不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立;
②若F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),则F(1)=2,F(2)=24;
③已知数列{an}中,an=n2+λn+1(λ∈R).若λ>-3,则恒有an+1>an(n∈N*);
④公差小于零的等差数列{an}的前n项和为Sn.若S20=S40,则S30为数列{Sn}的最大项;以上四个命题正确的是
①已知正项等比数列{an}中,不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立;
②若F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),则F(1)=2,F(2)=24;
③已知数列{an}中,an=n2+λn+1(λ∈R).若λ>-3,则恒有an+1>an(n∈N*);
④公差小于零的等差数列{an}的前n项和为Sn.若S20=S40,则S30为数列{Sn}的最大项;以上四个命题正确的是
①③④
①③④
(填入相应序号)分析:由正项等比数列{an}中,an+1,an,an-1(n≥2,n∈N*)成等差数列,知an+1+an-1=2an(n≥2,n∈N*);由F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),知F(1)=1+1=2,F(2)=(2+1)(2+2)=12≠24;由λ>-3知an+1-an=[(n+1)2+λ(n+1)+1]-(n2+λn+1)=2n+1+λ>0;由公差小于零的等差数列{an}的前n项和为Sn.S20=S40,知20a1+
d=40a1+
d,a1=-
d,所以Sn=-
n+
d=
(n-30)2-450d,由d<0,知S30为数列{Sn}的最大项.
20×19 |
2 |
40×39 |
2 |
59 |
2 |
59d |
2 |
n(n-1) |
2 |
d |
2 |
解答:解:∵正项等比数列{an}中,an+1,an,an-1(n≥2,n∈N*)成等差数列,
∴an+1+an-1=2an(n≥2,n∈N*),
∴不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立.
故①正确;
∵F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),
∴F(1)=1+1=2,
F(2)=(2+1)(2+2)=12≠24,
故②不正确;
∵λ>-3
∴an+1-an=[(n+1)2+λ(n+1)+1]-(n2+λn+1)=2n+1+λ>0,
∴若λ>-3,则恒有an+1>an(n∈N*),
故③正确;
公差小于零的等差数列{an}的前n项和为Sn.
若S20=S40,
则20a1+
d=40a1+
d,
∴a1=-
d,
Sn=-
n+
d
=
n2-30d
=
(n-30)2-450d,
∵d<0,
∴S30为数列{Sn}的最大项.
故④正确.
故答案为:①③④.
∴an+1+an-1=2an(n≥2,n∈N*),
∴不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立.
故①正确;
∵F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),
∴F(1)=1+1=2,
F(2)=(2+1)(2+2)=12≠24,
故②不正确;
∵λ>-3
∴an+1-an=[(n+1)2+λ(n+1)+1]-(n2+λn+1)=2n+1+λ>0,
∴若λ>-3,则恒有an+1>an(n∈N*),
故③正确;
公差小于零的等差数列{an}的前n项和为Sn.
若S20=S40,
则20a1+
20×19 |
2 |
40×39 |
2 |
∴a1=-
59 |
2 |
Sn=-
59d |
2 |
n(n-1) |
2 |
=
d |
2 |
=
d |
2 |
∵d<0,
∴S30为数列{Sn}的最大项.
故④正确.
故答案为:①③④.
点评:本题考查数列的性质的应用,是基础题.解题时要认真审题,熟练掌握等差数列和等比数列的性质.
练习册系列答案
相关题目