题目内容
(08年宁夏、海南卷理)(本小题满分12分)
设函数,曲线在点处的切线方程为y=3.
(Ⅰ)求的解析式:
(Ⅱ)证明:函数的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
【解析】(Ⅰ),
于是解得或
因,故.
(Ⅱ)证明:已知函数,都是奇函数.
所以函数也是奇函数,其图像是以原点为中心的中心对称图形.而.可知,函数的图像按向量平移,即得到函数的图像,故函数的图像是以点为中心的中心对称图形.
(Ⅲ)证明:在曲线上任取一点.
由知,过此点的切线方程为
.
令得,切线与直线交点为.
令得,切线与直线交点为.
直线与直线的交点为.
从而所围三角形的面积为.
所以,所围三角形的面积为定值.
练习册系列答案
相关题目