题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_ST/0.png)
(I)求ω的值及函数f(x)的单调递增区间;
(II)在△ABC中,设内角A、B、C所对边的长分别为a、b,c若a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_ST/2.png)
【答案】分析:(I)先化简函数,利用周期为2π,可求w的值,从而可得函数f(x)的单调递增区间;
(II)由f(A)=
,求得A的值,再由余弦定理,即可求b的值.
解答:解:(I)函数
=
=sin(2ω+
)+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/4.png)
∵T=
=2π,∴ω=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/6.png)
∴f(x)=sin(x+
)+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/8.png)
∴函数f(x)的单调递增区间为[2kπ-
,2kπ+
],k∈Z;
(II)∵f(x)=sin(x+
)+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/12.png)
∴f(A)=sin(A+
)+
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/15.png)
∴sin(A+
)=1
∵
<A+
<![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/19.png)
∴A+
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/21.png)
∴A=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/22.png)
由余弦定理:a2=b2+c2-2bccosA
∴b2+4-2b=3
∴b=1.
点评:本题考查三角函数的化简,考查余弦定理的运用,考查学生的计算能力,属于中档题.
(II)由f(A)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/0.png)
解答:解:(I)函数
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/4.png)
∵T=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/6.png)
∴f(x)=sin(x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/8.png)
∴函数f(x)的单调递增区间为[2kπ-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/10.png)
(II)∵f(x)=sin(x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/12.png)
∴f(A)=sin(A+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/15.png)
∴sin(A+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/16.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/19.png)
∴A+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/21.png)
∴A=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100440987093611/SYS201311031004409870936016_DA/22.png)
由余弦定理:a2=b2+c2-2bccosA
∴b2+4-2b=3
∴b=1.
点评:本题考查三角函数的化简,考查余弦定理的运用,考查学生的计算能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目