分析:先根据椭圆定义可知|PF
1|+|PF
2|=2a,再利用余弦定理化简整理得cos∠PF
1F
2=
-1,进而根据均值不等式确定|PF
1||PF
2|的范围,进而确定cos∠PF
1F
2的最小值,求得a和b的关系,进而求得a和c的关系,确定椭圆的离心率.
解答:解:根据椭圆的定义可知|PF
1|+|PF
2|=2a
cos∠PF
1F
2=
|PF 1|2+|PF 2|2-|F1F2|2 |
2|PF1| |PF2| |
=
-1≥
-1=-
∴a
2=4b
2∴c
2=
=3b
2∴e=
=
点评:本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.