题目内容

甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为
12
,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
分析:(1)打满3局比赛还未停止即在三局比赛中没有人连胜两局,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.
(2)ξ的所有可能值为2,3,4,5,6,分别求出ξ取每一个值的概率,列出分布列即可.
解答:解:令Ak,Bk,Ck分别表示甲、乙、丙在第k局中获胜.
(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比
赛还未停止的概率为P(A1C2B3)+P(B1C2A3)=
1
23
+
1
23
=
1
4

(Ⅱ)ξ的所有可能值为2,3,4,5,6,且P(ξ=2)=P(A1A2)+P(B1B2)=
1
22
+
1
22
=
1
2
P(ξ=3)=P(A1C2C3)+P(B1C2C3)=
1
23
+
1
23
=
1
4
P(ξ=4)=P(A1C2B3B4)+P(B1C2A3A4)=
1
24
+
1
24
=
1
8
P(ξ=5)=P(A1C2B3A4A5)+P(B1C2A3B4B5)=
1
25
+
1
25
=
1
16
P(ξ=6)=P(A1C2B3A4C5)+P(B1C2A3B4C5)=
1
25
+
1
25
=
1
16

故有分布列
ξ 2 3 4 5 6
P
1
2
1
4
1
8
1
16
1
16
从而Eξ=2×
1
2
+3×
1
4
+4×
1
8
+5×
1
16
+6×
1
16
=
47
16
(局).
点评:本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网