题目内容

某学校高三年级有学生1 000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学,
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如下图:
(ⅰ)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表。据此,计算这100名学生身高数据的期望μ及标准差σ(精确到0.1):
(ⅱ)若总体服从正态分布,以样本估计总体,据此,估计该年级身高在(158.6,181.4)范围中的学生的人数;
(Ⅲ)如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
 
身高达标
身高不达标
总计
积极参加体育锻炼
40
 
 
不积极参加体育锻炼
 
15
 
总计
 
 
100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:
参考数据:
解:(Ⅰ)甲、乙被抽到的概率均为
且事件“甲同学被抽到”与事件“乙同学被抽到”相互独立,
故甲、乙两人都被抽到的概率为
(Ⅱ)(ⅰ)总体数据的期望约为:
μ=145×0.03+155×0.17+165×0.30+175×0.30+185×0.17+195×0.03=170(cm),
标准差σ=11.4。
(ⅱ)由于μ=170,σ≈11.4,
当身高x∈(158.6,181.4)时,即x∈(μ-σ,μ+σ),
故身高落在(158.6,181.4)中的概率为0.682 6,
故身高落在(158.6,181.4)中的人数为683人。
(Ⅲ)(ⅰ)

(ⅱ)
故有75%把握认为体育锻炼与身高达标有关系。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网