题目内容

(06年上海卷理)(14分)

在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.

(1)求证:“如果直线过点T(3,0),那么=3”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

解析:(1)设过点T(3,0)的直线交抛物线y2=2x于点A(x1,y1)、B(x2,y2).

         当直线的钭率不存在时,直线的方程为x=3,此时,直线与抛物线相交于点A(3,)、B(3,-).             ∴=3;

         当直线的钭率存在时,设直线的方程为,其中

         由

         又 ∵

    ∴

    综上所述,命题“如果直线过点T(3,0),那么=3”是真命题;

(2)逆命题是:设直线交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题.

   例如:取抛物线上的点A(2,2),B(,1),此时=3,

直线AB的方程为:,而T(3,0)不在直线AB上;

说明:由抛物线y2=2x上的点A (x1,y1)、B (x2,y2) 满足=3,可得y1y2=-6,

或y1y2=2,如果y1y2=-6,可证得直线AB过点(3,0);如果y1y2=2,可证得直线AB过点(-1,0),而不过点(3,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网