题目内容

某社团组织20名志愿者利用周末和节假日参加社会公益活动志愿者中,年龄在2040的有12人,年龄大于40的有8.

1在志愿者中分层抽样方法随机抽取5年龄大于40岁的应该抽取几名?

2上述抽取的5名志愿者中任取2取出的2人中恰有1年龄大于40岁的概率.

 

12人;(2)恰有1年龄大于40岁的概率为.

【解析】

试题分析:(1)利用分层抽样中总体抽样比与各层中的抽样比相等这一特点,先求出抽样比例,然后用年龄大于40岁的人数乘以抽样比即可得到在年龄大于40岁的志愿者中抽取的人数;(2)这是古典概型的概率问题,先用列举法确定从5名志愿者中任取2名的所有可能有多少种,然后确定这2人中恰有1人年龄大于40岁的情况又有多少种,最后按照古典概型的概率计算公式计算即可.

试题解析:(1)若在志愿者中随机抽取5则抽取比例为 2

年龄大于40岁的应该抽取 4

(2)上述抽取的5名志愿者中,年龄在2040的有3人,记为123

年龄大于40的有2人,记为45 6

从中任取2,所有可能的基本事件为:

108

其中恰有1年龄大于40岁的事件有

610

∴恰有1年龄大于40岁的概率 12.

考点:1.随机抽样;2.古典概率.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网