题目内容

(2010•温州二模)如图,正方形ABCD与正方形CDEF所成的二面角为60°,则直线EC与直线AD所成的角的余弦值为
2
4
2
4
分析:由题意得,CD⊥AD,CD⊥DE.可得正方形ABCD所在平面与正方形CDEF的二面角即∠CBE=60°,同时也得CD⊥平面ADE,进而求出CE、BE、BC,即可求出异面直线EC与直线AD所成的角的余弦值.
解答:解:由题意得,CD⊥AD,CD⊥DE.可得正方形ABCD与正方形CDEF的二面角即∠ADE=60°,
同时也得CD⊥平面ADE,
即三角形ADE为直角三角形和三角形CBF为等边三角形;
即是AB⊥BF.
设AB=1,则CE=
2
,BE=
2
,BC=1,
利用余弦定理,得 COS∠BCE=
2
4

则直线EC与直线AD所成的角的余弦值为
2
4

故答案为:
2
4
点评:此题主要考查异面直线的角度及余弦定理,考查计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网