题目内容
已知函数f(x)=x2-ax+2lnx(其中a是实数).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若2(
+
)<a<5,且f(x)有两个极值点x1,x2(x1<x2),求|f(x1)-f(x2)|的取值范围.(其中e是自然对数的底数)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若2(
e |
1 | ||
|
(Ⅰ)∵f(x)=x2-ax+2lnx(x>0),∴f′(x)=2x-a+
=(2x+
)-a≥4-a;
∴①当4-a≥0,即a≤4时,f'(x)≥0,f(x)是增函数,增区间为(0,+∞);
②当a>4时,f′(x)=
,
∵△=a2-16>0,x1+x2=
>0,x1x2=1>0,∴0<x1<x2;
∴f(x)的增区间为(0,
),(
,+∞),减区间为(
,
);
(Ⅱ)由(Ⅰ)知,f(x)在(x1,x2)内递减,∴f(x1)>f(x2);
∵x2=
>x1,∴0<x1<1;
∵2(
+
)<a=2(x1+x2)=2(x1+
)<5=2(2+
),
而y=2(x1+
)在(0,1)上递减,
∴
<x1<
;
∴|f(x1)-f(x2)|=-
(x1-x2)+2ln
=
-
+4lnx1;
令g(x1)=
-
+4lnx1(
<x1<
),
∴g′(x1)=-
<0,∴g(x1)在(
,
)上递减;
∴|f(x1)-f(x2)|∈(e-
-2,
-4ln2).
2 |
x |
2 |
x |
∴①当4-a≥0,即a≤4时,f'(x)≥0,f(x)是增函数,增区间为(0,+∞);
②当a>4时,f′(x)=
2x2-ax+2 |
x |
∵△=a2-16>0,x1+x2=
a |
2 |
∴f(x)的增区间为(0,
a-
| ||
4 |
a+
| ||
4 |
a-
| ||
4 |
a+
| ||
4 |
(Ⅱ)由(Ⅰ)知,f(x)在(x1,x2)内递减,∴f(x1)>f(x2);
∵x2=
1 |
x1 |
∵2(
e |
1 | ||
|
1 |
x1 |
1 |
2 |
而y=2(x1+
1 |
x1 |
∴
1 |
2 |
1 | ||
|
∴|f(x1)-f(x2)|=-
a |
2 |
x1 |
x2 |
1 | ||
|
x | 21 |
令g(x1)=
1 | ||
|
x | 21 |
1 |
2 |
1 | ||
|
∴g′(x1)=-
2(
| ||
|
1 |
2 |
1 | ||
|
∴|f(x1)-f(x2)|∈(e-
1 |
e |
15 |
4 |
练习册系列答案
相关题目