题目内容

关于函数f(x)=4sin(2x+
x
3
)(x∈R),有下列命题:
①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;
②y=f(x)的表达式可改写为y=4cos(2x-
x
6
);
③y=f(x)的图象关于点(-
x
6
,0)对称;
④y=f(x)的图象关于直线x=-
π
6
对称.
其中正确的命题的序号是
 
分析:根据函数求出最小正周期,可知①错;利用诱导公式化简②,判断正误;求出函数的对称中心判定③;对称直线方程判断④的正误;即可得到解答.
解答:解:①函数f(x)=4sin (2x+
π
3
)
的最小正周期T=π,
由相邻两个零点的横坐标间的距离是
T
2
=
π
2
知①错.
②f(x)=4sin(2x+
π
3
)=4cos(
π
2
-2x-
π
3
)=4cos(2x+
π
3
-
π
2
)=4cos(2x-
π
6

③f(x)=4sin(2x+
π
3
)的对称点满足(x,0)
2x+
π
3
=kπ,x=( k-
π
3
π
2
   k∈Z
(-
π
6
,0)满足条件
④f(x)=4sin(2x+
π
3
)的对称直线满足
2x+
π
3
=(k+
1
2
)π;x=(k+
1
6
π
2

x=-
π
6
不满足
故答案为:②③
点评:本题考查三角函数的周期性及其求法,诱导公式的利用,以及正弦函数的对称性问题,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网