题目内容
下表为某体育训练队跳高、跳远成绩的分布,共有队员40人,成绩分为1~5五个档次,例如表中所示跳高成绩为4分,跳远成绩为2分的队员为5人.将全部队员的姓名卡混合在一起,任取一张,该卡片队员的跳高成绩为x分,跳远成绩为y分.
(1)求m+n的值;
(2)求x=4的概率及x≥3且y=5的概率.
y x |
跳 远 | |||||
5 | 4 | 3 | 2 | 1 | ||
跳 高 |
5 | 1 | 3 | 1 | 0 | 1 |
4 | 1 | 0 | 2 | 5 | 1 | |
3 | 2 | 1 | 0 | 4 | 3 | |
2 | 1 | m | 6 | 0 | n | |
1 | 0 | 0 | 1 | 1 | 3 |
(2)求x=4的概率及x≥3且y=5的概率.
分析:(1)表中各个单元格的数字之和应该等于总数40,由此建立关于关系式,即可解出m+n的值;
(2)分别由表格算出x=4的人数,以及x≥3且y=5的人数,结合古典概型计算公式即可得到所求的概率.
(2)分别由表格算出x=4的人数,以及x≥3且y=5的人数,结合古典概型计算公式即可得到所求的概率.
解答:解:(1)表中反映了队员的跳高、跳远的综合成绩,其中各单元格的数字之和等于40
即:1+3+1+0+1+1+0+2+5+1+2+1+0+4+3+1+m+6+0+n+0+0+1+1+3=40
整理,得m+n+37=40,因此m+n=3 …(6分)
(2)∵x=4的人数为1+0+2+5+1=9
∴x=4的概率为:P1=
,…(9分)
又∵x≥3且y=5的人数为1+1+2=4
∴x≥3且y=5的概率为P2=
.…(12分)
答:(1)m+n的值为3;(2)x=4的概率为
,x≥3且y=5的概率为
…(13分)
即:1+3+1+0+1+1+0+2+5+1+2+1+0+4+3+1+m+6+0+n+0+0+1+1+3=40
整理,得m+n+37=40,因此m+n=3 …(6分)
(2)∵x=4的人数为1+0+2+5+1=9
∴x=4的概率为:P1=
9 |
40 |
又∵x≥3且y=5的人数为1+1+2=4
∴x≥3且y=5的概率为P2=
1 |
10 |
答:(1)m+n的值为3;(2)x=4的概率为
9 |
40 |
1 |
10 |
点评:本题通过一个具体例子,考察了学生的对统计图表的认识和古典概率模型的理解,同时也考察学生信息收集与数据处理的能力,属于基础题.
练习册系列答案
相关题目
下表为某体育训练队跳高、跳远成绩的分布,共有队员40人,成绩分为1~5五个档次。例如表中所示跳高成绩为4分,跳远成绩为2分的队员为5人.将全部队员的姓名卡混合在一起,任取一张,该卡片队员的跳高成绩为x分,跳远成绩为y分.
⑴求的值;
⑵求的概率及且的概率.
跳 远 | ||||||
5 | 4 | 3 | 2 | 1 | ||
跳 高 | 5 | 1 | 3 | 1 | 0 | 1 |
4 | 1 | 0 | 2 | 5 | 1 | |
3 | 2 | 1 | 0 | 4 | 3 | |
2 | 1 |
| 6 | 0 |
| |
1 | 0 | 0 | 1 | 1 | 3 |
下表为某体育训练队跳高与跳远成绩的统计表,全队有队员40人,成绩分为1分至5分五个档次,例如表中所示:跳高成绩为4分的人数是:1+0+2+5+1=9人;跳远成绩为2分的人数是:0+5+4+0+1=10人;跳高成绩为4分且跳远成绩为2分的队员为5人.
将记载着跳高、跳远成绩的全部队员的姓名卡40张混合在一起,任取一张,记该卡片队员的跳高成绩为x,跳远成绩为y,设x,y为随机变量(注:没有相同姓名的队员)
(1)求的值;
(2)求的概率及且的概率;
(3)若y的数学期望为,求m,n的值.
y x | 跳 远 | |||||
5 | 4 | 3 | 2 | 1 | ||
跳 高 | 5 | 1 | 3 | 1 | 0 | 1 |
4 | 1 | 0 | 2 | 5 | 1 | |
3 | 2 | 1 | 0 | 4 | 3 | |
2 | 1 | m | 6 | 0 | n | |
1 | 0 | 0 | 1 | 1 | 3 |