题目内容
18.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为( )A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-∞,-1)∪(1,+∞) |
分析 令F(x)=f(x)-2x-1,从而求导可判断导数F′(x)=f′(x)-2<0恒成立,从而可判断函数的单调性,从而可得当x>1时,F(x)<F(1)=0,从而得到不等式f(x)<2x+1的解集.
解答 解:令F(x)=f(x)-2x-1,
则F′(x)=f′(x)-2,
又∵f(x)的导数f′(x)在R上恒有f′(x)<2,
∴F′(x)=f′(x)-2<0恒成立,
∴F(x)=f(x)-2x-1是R上的减函数,
又∵F(1)=f(1)-2-1=0,
∴当x>1时,F(x)<F(1)=0,即f(x)-2x-1<0,
即不等式f(x)<2x+1的解集为(1,+∞);
故选A.
点评 本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.
练习册系列答案
相关题目
13.设x,y满足约束条件$\left\{\begin{array}{l}x+2y-4≥0\\ 3x+y-3≥0\end{array}\right.$,若$\overrightarrow a=(y,x+m)$,$\overrightarrow b=(y,x-m)$,且$\overrightarrow a⊥\overrightarrow b$,则正实数m的最小值为( )
A. | $\frac{{\sqrt{85}}}{5}$ | B. | $\frac{{4\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{16}{5}$ |
3.设函数f(x)和g(x)分别为R上的奇函数和偶函数,则下列结论恒成立的是( )
A. | f(x)-|g(x)|为奇函数 | B. | -|f(x)|-g(x)为奇函数 | C. | -f(x)+|g(x)|为偶函数 | D. | |f(x)|-g(x)为偶函数 |