题目内容
函数f(x)对任意x∈R都有f(x)+f(1-x)=1
(1)求f(
)的值;
(2)数列{an}满足:an=f(0)+f(
)+f(
)+L+f(
)+f(1),求an;
(3)令bn=
,Tn=b12+b22+L+bn2,Sn=8-
,试比较Tn与Sn的大小、
(1)求f(
1 |
2 |
(2)数列{an}满足:an=f(0)+f(
1 |
n |
2 |
n |
n-1 |
n |
(3)令bn=
2 |
2an-1 |
4 |
n |
(1)令x=
,
则有f(
)+f(1-
)=f(
)+f(
)=1.∴f(
)=
.
(2)令x=
,得f(
)+f(1-
)=1.即f(
)+f(
)=1.
因为an=f(0)+f(
)+f(
)++f(
)+f(1),
所以an=f(1)+f(
)+f(
)++f(
)+f(0).
两式相加得:2an=[f(0)+f(1)]+[f(
)+f(
)]++[f(1)+f(0)]=n+1,∴an=
,n∈N*.
(3)bn=
=
,n=1时,Tn=Sn;n≥2时,∴Tn=b12+b22++bn2=4(1+
+
++
)≤4[1+
+
++
]
=4[1+(1-
)+(
-
)++(
-
)]
=4(2-
)=8-
=Sn
∴Tn≤Sn.
1 |
2 |
则有f(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(2)令x=
1 |
n |
1 |
n |
1 |
n |
1 |
n |
n-1 |
n |
因为an=f(0)+f(
1 |
n |
2 |
n |
n-1 |
n |
所以an=f(1)+f(
n-1 |
n |
n-2 |
n |
1 |
n |
两式相加得:2an=[f(0)+f(1)]+[f(
1 |
n |
n-1 |
n |
n+1 |
2 |
(3)bn=
2 |
2an-1 |
2 |
n |
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
1×2 |
1 |
2×3 |
1 |
n(n-1) |
=4[1+(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n-1 |
1 |
n |
=4(2-
1 |
n |
4 |
n |
∴Tn≤Sn.
练习册系列答案
相关题目