题目内容
7.过点C(0,p)的直线与抛物线x2=2py(p>0)相交于A,B两点,若点N是点C关于坐标原点的对称点,则△ANB面积的最小值为( )A. | 2$\sqrt{2}$p | B. | $\sqrt{2}$p | C. | 2$\sqrt{2}$p2 | D. | $\sqrt{2}$p2 |
分析 依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立消去y得x2-2pkx-2p2=0.然后由韦达定理结合三角形面积公式进行求解.
解答 解:依题意,点N的坐标为N(0,-p),
可设A(x1,y1),B(x2,y2),
直线AB的方程为y=kx+p,与x2=2py联立,消去y得x2-2pkx-2p2=0.
由韦达定理得x1+x2=2pk,x1x2=-2p2.
于是S△ABN=S△BCN+S△ACN=$\frac{1}{2}•2p•$|x1-x2|=2p2$\sqrt{{k}^{2}+2}$,
∴当k=0时,△ANB面积的最小值为2$\sqrt{2}$p2.
故选:C.
点评 本小题主要考查直线和抛物线的位置关系,考查综合运用数学知识进行推理运算的能力和解决问题的能力.
练习册系列答案
相关题目
17.已知函数f(x)的导函数为f′(x),且f(x)=f′($\frac{π}{6}$)sinx+f′($\frac{π}{3}$)cosx+x,则f′($\frac{π}{3}$)=( )
A. | 3-$\sqrt{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 3+$\sqrt{3}$ |
18.函数f(x)=sin(x+$\frac{π}{6}$)(x∈R),为了得到函数y=f(x)的图象,只需将函数g(x)=sin(x+$\frac{π}{3}$)(x∈R)的图象( )
A. | 向左平移$\frac{π}{12}$个单位长度 | B. | 向右平移$\frac{π}{12}$个单位长度 | ||
C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向右平移$\frac{π}{6}$个单位长度 |
16.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A($\frac{2π}{3}$,0),B($\frac{8π}{3}$,0),则( )
A. | ω=$\frac{1}{2}$,φ=-$\frac{2π}{3}$ | B. | ω=1,φ=-$\frac{2π}{3}$ | C. | ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$ | D. | ω=1,φ=-$\frac{π}{3}$ |
17.执行如图所示的程序框图,输出的S值为( )
A. | 32 | B. | 50 | C. | 70 | D. | 90 |