题目内容

如图所示,在各个面都是平行四边形的四棱柱ABCD-A1B1C1D1中,P是CA1的中点,M是CD1的中点,N是C1D1的中点,点Q在CA1上,且CQ:QA1=4:1,设
AB
=a,
AD
=b,
AA1
=c
,用基底{a,b,c}表示以下向量:
(1)
AP

(2)
AM

(3)
AN

(4)
AQ
分析:利用向量的平行四边形法则和向量的共线定理即可得出.
解答:解:如图所示,
(1)
AP
=
1
2
(
AC
+
AA1
)
=
1
2
(
AB
+
AD
+
AA1
)=
1
2
(
a
+
b
+
c
)

(2)
AM
=
1
2
(
AC
+
AD1
)
=
1
2
(
AB
+2
AD
+
AA1
)
=
1
2
(
a
+2
b
+
c
)

(3)
AN
=
1
2
(
AC1
+
AD1
)
=
1
2
[(
AB
+
AD
+
AA1
)+(
AD
+
AA1
)]

=
1
2
(
AB
+2
AD
+2
AA1
)
=
1
2
a
+
b
+
c

(4)
AQ
=
AC
+
CQ
=
AC
+
4
5
CA1
=
AC
+
4
5
(
AA1
-
AC
)

=
1
5
AC
+
4
5
AA1
=
1
5
(
AB
+
AD
)+
4
5
AA1
=
1
5
a
+
1
5
b
+
4
5
c
点评:熟练掌握向量的平行四边形法则和向量的共线定理是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网