题目内容
如图所示,在各个面都是平行四边形的四棱柱ABCD-A1B1C1D1中,P是CA1的中点,M是CD1的中点,N是C1D1的中点,点Q在CA1上,且CQ:QA1=4:1,设
=a,
=b,
=c,用基底{a,b,c}表示以下向量:
(1)
;
(2)
;
(3)
;
(4)
.
AB |
AD |
AA1 |
(1)
AP |
(2)
AM |
(3)
AN |
(4)
AQ |
分析:利用向量的平行四边形法则和向量的共线定理即可得出.
解答:解:如图所示,
(1)
=
(
+
)=
(
+
+
)=
(
+
+
);
(2)
=
(
+
)=
(
+2
+
)=
(
+2
+
);
(3)
=
(
+
)=
[(
+
+
)+(
+
)]
=
(
+2
+2
)=
+
+
;
(4)
=
+
=
+
=
+
(
-
)
=
+
=
(
+
)+
=
+
+
.
(1)
AP |
1 |
2 |
AC |
AA1 |
1 |
2 |
AB |
AD |
AA1 |
1 |
2 |
a |
b |
c |
(2)
AM |
1 |
2 |
AC |
AD1 |
1 |
2 |
AB |
AD |
AA1 |
1 |
2 |
a |
b |
c |
(3)
AN |
1 |
2 |
AC1 |
AD1 |
1 |
2 |
AB |
AD |
AA1 |
AD |
AA1 |
=
1 |
2 |
AB |
AD |
AA1 |
1 |
2 |
a |
b |
c |
(4)
AQ |
AC |
CQ |
AC |
4 |
5 |
CA1 |
AC |
4 |
5 |
AA1 |
AC |
=
1 |
5 |
AC |
4 |
5 |
AA1 |
1 |
5 |
AB |
AD |
4 |
5 |
AA1 |
1 |
5 |
a |
1 |
5 |
b |
4 |
5 |
c |
点评:熟练掌握向量的平行四边形法则和向量的共线定理是解题的关键.
练习册系列答案
相关题目