题目内容
(2012•丹东模拟)设函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若数列{an}是等差数列,且a3<0,则f(a1)+f(a2)+f(a3)+f(a4)+f(a5)的值( )
分析:由题设知a2+a4=2a3<0,a1+a5=2a3<0,x≥0,f(x)单调递减,所以在R上,f(x)都单调递减,因为f(0)=0,所以x≥0时,f(x)<0,x<0时,f(x)>0,由此能够导出(a1)+f(a2)+f(a3)+f(a4)+f(a5)的值恒为正数.
解答:解:∵函数f(x)是定义在R上的奇函数,
且当x≥0时,f(x)单调递减,
数列{an}是等差数列,且a3<0,
∴a2+a4=2a3<0,
a1+a5=2a3<0,
x≥0,f(x)单调递减,
所以在R上,f(x)都单调递减,
因为f(0)=0,
所以x≥0时,
f(x)<0,x<0时,f(x)>0,
∴f(a3)>0
∴f(a1)+f(a5)>0,
∴f(a2)+f(a4)>0.
故选A.
且当x≥0时,f(x)单调递减,
数列{an}是等差数列,且a3<0,
∴a2+a4=2a3<0,
a1+a5=2a3<0,
x≥0,f(x)单调递减,
所以在R上,f(x)都单调递减,
因为f(0)=0,
所以x≥0时,
f(x)<0,x<0时,f(x)>0,
∴f(a3)>0
∴f(a1)+f(a5)>0,
∴f(a2)+f(a4)>0.
故选A.
点评:本题考查数列与函数的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目