题目内容
如图,在五面体P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,PB=,PD=.
(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A的大小.
解 (1)由已知AB=4,AD=2,∠BAD=60°,
得BD2=AD2+AB2-2AD•ABcos60°=4+16-2×2×4×=12.
∴AB2=AD2+BD2,∴△ABD是直角三角形,
∠ADB=90°,即AD⊥BD.
在△PDB中,PD=,PB=,BD=,
∴PB2=PD2+BD2,故得PD⊥BD.
又PD∩AD=D,∴BD⊥平面PAD.
(2)∵BD⊥平面PAD,BD?平面ABCD,
∴平面PAD⊥平面ABCD.
作PE⊥AD于E,又PE?平面PAD,∴PE⊥平面ABCD,
∴∠PDE是PD与底面BCD所成的角,∴∠PDE=60°,
∴PE=PDsin60°=•=
作EF⊥BC于F,连PF,则PF⊥BC,∴∠PFE是二面角P-BC-A的平面角.
又EF=BD=,∴在Rt△PEF中,
tan∠PFE===.
故二面角P-BC-A的大小为arctan.
分析:(1)证明直线与平面垂直,关键要找到两条相交直线与之都垂直.本小问利用勾股定理的逆定理可证得AD⊥BD,PD⊥BD,从而证出BD⊥平面PAD;
(2)作PE⊥AD于E,证出∠PDE是PD与底面BCD所成的角,再作EF⊥BC于F,连PF,则PF⊥BC,∴∠PFE是二面角P-BC-A的平面角.在Rt△PEF中,求∠PFE.
点评:本小题主要考查空间线面关系、二面角的度量,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
得BD2=AD2+AB2-2AD•ABcos60°=4+16-2×2×4×=12.
∴AB2=AD2+BD2,∴△ABD是直角三角形,
∠ADB=90°,即AD⊥BD.
在△PDB中,PD=,PB=,BD=,
∴PB2=PD2+BD2,故得PD⊥BD.
又PD∩AD=D,∴BD⊥平面PAD.
(2)∵BD⊥平面PAD,BD?平面ABCD,
∴平面PAD⊥平面ABCD.
作PE⊥AD于E,又PE?平面PAD,∴PE⊥平面ABCD,
∴∠PDE是PD与底面BCD所成的角,∴∠PDE=60°,
∴PE=PDsin60°=•=
作EF⊥BC于F,连PF,则PF⊥BC,∴∠PFE是二面角P-BC-A的平面角.
又EF=BD=,∴在Rt△PEF中,
tan∠PFE===.
故二面角P-BC-A的大小为arctan.
分析:(1)证明直线与平面垂直,关键要找到两条相交直线与之都垂直.本小问利用勾股定理的逆定理可证得AD⊥BD,PD⊥BD,从而证出BD⊥平面PAD;
(2)作PE⊥AD于E,证出∠PDE是PD与底面BCD所成的角,再作EF⊥BC于F,连PF,则PF⊥BC,∴∠PFE是二面角P-BC-A的平面角.在Rt△PEF中,求∠PFE.
点评:本小题主要考查空间线面关系、二面角的度量,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
练习册系列答案
相关题目