题目内容
将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )A.
B.2+
C.4+
D.
【答案】分析:底面放三个钢球,上再落一个钢球时体积最小,把钢球的球心连接,则又可得到一个棱长为2的小正四面体,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,先求出小正四面体的中心到底面的距离,再求出正四面体的中心到底面的距离,把此距离乘以4可得正四棱锥的高.
解答:解:由题意知,底面放三个钢球,上再落一个钢球时体积最小.
于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为,
且由正四面体的性质可知:正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,
∴小正四面体的中心到底面的距离是 ×=,正四面体的中心到底面的距离是 +1 (1即小钢球的半径),
所以可知正四棱锥的高的最小值为 (+1)×4=4+,
故选 C.
点评:小正四面体是由球心构成的,正四面体的中心到底面的距离等于小正四面体的中心到底面的距离再加上小钢球的半径1.
解答:解:由题意知,底面放三个钢球,上再落一个钢球时体积最小.
于是把钢球的球心连接,则又可得到一个棱长为2的小正四面体,则不难求出这个小正四面体的高为,
且由正四面体的性质可知:正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心应该是重合的,
∴小正四面体的中心到底面的距离是 ×=,正四面体的中心到底面的距离是 +1 (1即小钢球的半径),
所以可知正四棱锥的高的最小值为 (+1)×4=4+,
故选 C.
点评:小正四面体是由球心构成的,正四面体的中心到底面的距离等于小正四面体的中心到底面的距离再加上小钢球的半径1.
练习册系列答案
相关题目
将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( )
A、
| ||||||
B、2+
| ||||||
C、4+
| ||||||
D、
|