题目内容
设对任意实数x>0,y>0,若不等式x+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_ST/0.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_ST/1.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_ST/2.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_ST/3.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_ST/4.png)
【答案】分析:分离参数可得:a≥
=
,令
,则a≥
令1+t=m(m>1),
=
,求出最大值,即可求得a的最小值.
解答:解:分离参数可得:a≥
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/7.png)
令
,则a≥![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/9.png)
令1+t=m(m>1),
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/11.png)
∵m>1,∴
(当且仅当m=
时,取等号)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/14.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/15.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/16.png)
∴a≥![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/17.png)
∴a的最小值为
.
点评:本题考查恒成立问题,考查基本不等式的运用,解题的关键是分离参数,转化为求函数的最值.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/5.png)
解答:解:分离参数可得:a≥
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/7.png)
令
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/9.png)
令1+t=m(m>1),
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/11.png)
∵m>1,∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/13.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/14.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/15.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/16.png)
∴a≥
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/17.png)
∴a的最小值为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190229470733503/SYS201310241902294707335009_DA/18.png)
点评:本题考查恒成立问题,考查基本不等式的运用,解题的关键是分离参数,转化为求函数的最值.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目