题目内容
5.(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=2$\sqrt{2}$,求四棱锥C-A1ABE的体积.
分析 (Ⅰ)连接AC1 交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD;
(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用$\frac{1}{3}×\frac{(A{A}_{1}+BE)×AB}{2}×CD$运算求得结果.
解答
(Ⅰ)证明:连接AC1 交A1C于点F,则F为AC1的中点.
∵直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,故DF为三角形ABC1的中位线,故DF∥BC1.
由于DF?平面A1CD,而BC1不在平面A1CD中,故有BC1∥平面A1CD.
(Ⅱ)解:∵AA1=AC=CB=2,AB=2$\sqrt{2}$,
∴此直三棱柱的底面ABC为等腰直角三角形.
由D为AB的中点可得CD⊥平面ABB1A1 ,∴CD=$\sqrt{2}$.
∴四棱锥C-A1ABE的体积V=$\frac{1}{3}×\frac{(A{A}_{1}+BE)×AB}{2}×CD$=$\frac{1}{3}×3\sqrt{2}×\sqrt{2}$=2
点评 本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关题目
1.已知$\sqrt{3}$sinθcosθ-$\frac{1}{2}$cos2θ=$\frac{\sqrt{3}}{3}$,θ∈[-$\frac{π}{6}$,$\frac{π}{3}$],则cos2θ=( )
| A. | $\frac{3\sqrt{2}-\sqrt{3}}{6}$ | B. | $\frac{3\sqrt{2}+\sqrt{3}}{6}$ | C. | $\frac{-3\sqrt{2}+\sqrt{3}}{6}$ | D. | $\frac{-3\sqrt{2}-\sqrt{3}}{6}$ |
19.正六棱柱ABCDEF-A1B1C1D1E1F1的侧面都是正方形,若底面边长为a,则截面A1DD1的面积为( )
| A. | $\sqrt{3}$a2 | B. | 2a2 | C. | $\frac{3}{2}$a2 | D. | $\frac{\sqrt{3}}{2}$a2 |
17.已知△ABC内有2005个点,其中任意三点不共线,把这2005个点加上△ABC的三个点共2008个点作为顶点,组成互不相叠的小三角形,则一共可组成小三角形的个数为( )
| A. | 2004 | B. | 2009 | C. | 4011 | D. | 4013 |