题目内容

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{
anbn
}的前n项和Sn
分析:(Ⅰ)设{an}的公差为d,{bn}的公比为q,由题设条件知
1+q=1+d
2q2=1+1+3d
,由此能求出数列{an},{bn}的通项公式.
(Ⅱ)由an=2n-1,bn=2n-1,知
an
bn
=
2n-1
2n-1
,故Sn=
2-1
20
+
2×2-1
2
+
2×3-1
22
+…+
2n-1
2n-1
,由此利用错位相减法能够求出数列{
an
bn
}的前n项和Sn
解答:解:(Ⅰ)∵{an}是等差数列,数列{bn}是各项都为正数的等比数列,
且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
设{an}的公差为d,{bn}的公比为q,
1+q=1+d
2q2=1+1+3d
,解得d=q=2,或d=q=-
1
2
(舍),
∴an=1+2(n-1)=2n-1
bn=2n-1
(Ⅱ)∵an=2n-1,bn=2n-1
an
bn
=
2n-1
2n-1

∴Sn=
2-1
20
+
2×2-1
2
+
2×3-1
22
+…+
2n-1
2n-1
,①
1
2
Sn
=
2-1
2
+
2×2-1
22
+
2×3-1
23
+…+
2n-1
2n
,②
1
2
Sn
=1+
2
2
+
2
4
+
2
8
+…+
2
2n-1
-
2n-1
2n

=1+2×
1
2
(1-
1
2n-1
)
1-
1
2
-
2n-1
2n

=1+2-
2
2n-1
-
2n-1
2n

∴Sn=6-
4
2n-1
-
4n-2
2n
点评:本题考查数列的通项公式和数列的前n项和公式的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网