题目内容

我们把平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为斜坐标系.平面上任意一点P的斜坐标定义为:若
OP
=x
e1
+y
e2
(其中
e1
e2
分别为斜坐标系的x轴、y轴正方向上的单位向量,x、y∈R),则点P的斜坐标为(x,y).在平面斜坐标系xoy中,若∠xoy=60°,已知点M的斜坐标为(1,2),则点M到原点O的距离为
 
分析:先建立斜坐标系,找出对应关系,最后由余弦定理可得答案.
解答:精英家教网解:依题意建立斜坐标系:
则A(1,0),B(0,2),M(1,2),∠AOB=60°,∠OAM=120°
四边形OAMB为平行四边形,∴|OA|=1|AM|=|OB|=2,
由余弦定理可得:|OM|2=|OA|2+|AM|2-2|OA||AM|cos120°=7
∴|OM|=
7

故答案为:
7
点评:本题主要考查余弦定理的运用.基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网