题目内容

(2014•达州一模)设函数f(x)=(x2-8x+c1)(x2-8x+c2)(x2-8x+c3)(x2-8x+c4),集合M={x|f(x)=0}={x1,x2,…,x7}⊆N*,设c1≥c2≥c3≥c4,则c1-c4=(  )
分析:由已知中集合M={x|f(x)=0}={x1,x2,…,x7}⊆N*,结合函数f(x)的解析式,及韦达定理,我们易求出c1及c4的值,进而得到答案.
解答:解:由根与系数的关系知xi+yi=8,xi•yi=ci
这里xi,yi为方程x2-8x+ci=0之根,i=1,…,4.
又∵M={x|f(x)=0}={x1,x2,…,x7}⊆N*
由集合性质可得(xi,yi)取(1,7),(2,6),(3,4),(4,4),
又c1≥c2≥c3≥c4
故c1=16,c4=7
∴c1-c4=9
故选D.
点评:本题考查的知识点是函数与方程的综合运用,其中根据韦达定理,求出c1及c4的值,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网