题目内容

 如图所示,在长方体中,是棱上一点,

(1)若为CC1的中点,求异面直线A1M和C1D1所成的角的正切值;

(2)是否存在这样的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,请说明理由。

 

【答案】

(1)。(2)

【解析】

试题分析:(1)由于C1D1∥B1A1故根据异面直线所成角的定义可知∠MA1B1为异面直线A1M和C1D1所成的角然后在解三角形MA1B1求出∠MA1B1的正切值即可.

(Ⅱ)可根据题中条件设出点M的坐标,然后根据面面垂直,计算得出A1B1⊥BM,BM⊥B1M然后再根据面面垂直的判定定理即可得证.

解:(1)∵C1D1∥A1B1

               ∴∠B1A1M即为直线A1M和C1D1所成的角

         ∴

(2)建立坐标系:,,,,

在平面上选择向量,,设法向量

,解得,取,得

在平面上选择向量,,设法向量

,解得,取,得,

,解得,所以

考点:本试题主要考查了考察异面直线所成角的定义以及面面垂直的证明,属常考题型,较难.

点评:解题的关键是要掌握异面直线所成角的定义(即将异面直线转化为相交直线所成的角)和面面垂直的判定定理。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网