题目内容

(1)将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率P(
A
B
)等于______;
(2)一个篮球运动员投篮一次得2分的概率为a,得3分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的期望为2,则
2
a
+
1
3b
的最小值为______.
(1)根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,
即在“至少出现一个3点”的情况下,“三个点数都不相同”的概率,
“至少出现一个3点”的情况数目为6×6×6-5×5×5=91,
“三个点数都不相同”则只有一个3点,共C31×5×4=60种,
故P(A|B)=
60
91

(2)由题意得2a+3b=2,
 
2
a
+
1
3b
=(
2
a
+
1
3b
)×
2a+3b
2
=
1
2
(5+
6b
a
+
2a
3b
)
9
2

2
a
+
1
3b
的最小值为4
1
2

故答案为:
60
91
;4
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网