题目内容
甲、乙两名射击运动员进行射击选拔比赛,已知甲、乙两运动员射击的环数稳定在6,7,8,9,10环,其射击比赛成绩的分布列如下:
甲运动员:
乙运动员:
(Ⅰ)若甲、乙两运动员各射击一次,求同时击中9环以上(含9环)的概率;
(Ⅱ)若从甲、乙两运动员中只能挑选一名参加某项国际比赛,你认为让谁参加比赛较合适?并说明理由.
甲运动员:
乙运动员:
(Ⅰ)若甲、乙两运动员各射击一次,求同时击中9环以上(含9环)的概率;
(Ⅱ)若从甲、乙两运动员中只能挑选一名参加某项国际比赛,你认为让谁参加比赛较合适?并说明理由.
(Ⅰ)记“甲运动员击中i环”为事件Ai;
“乙运动员击中i环”为事件Bi;
“甲、乙两运动员同时击中9环(含9环)”为事件C.(2分)
因为P(A9)+P(A10)=0.1+0.18=0.28,
P(B9)+P(B10)=0.28+0.17=0.45,.(4分)
所以P(C)=0.28×0.45=0.126.
故甲、乙两运动员同时击中9环以上(含9环)的概率为0.126.(6分)
(Ⅱ)由分布列可知,
Eξ=6×0.16+7×0.14+8×0.42+9×0.1+10×0.18=8.(7分)
Dξ=(6-8)2×0.16+(7-8)2×0.14+(8-8)2×0.42+(9-8)2×0.1+(10-8)2×0.18=1.6(8分)
又Eη=6×0.19+7×0.24+8×0.12+9×0.28+10×0.17=8.(9分)
Dη=(6-8)2×0.19+(7-8)2×0.24+(8-8)2×0.12+(9-8)2×0.28+(10-8)2×0.17=1.96(10分)
因为Eξ=Eη,Dξ<Dη,
所以甲、乙两运动员射击成绩的均值相等,
但甲射击成绩的稳定性比乙要好,故选派甲参加比赛较合适.(12分)
“乙运动员击中i环”为事件Bi;
“甲、乙两运动员同时击中9环(含9环)”为事件C.(2分)
因为P(A9)+P(A10)=0.1+0.18=0.28,
P(B9)+P(B10)=0.28+0.17=0.45,.(4分)
所以P(C)=0.28×0.45=0.126.
故甲、乙两运动员同时击中9环以上(含9环)的概率为0.126.(6分)
(Ⅱ)由分布列可知,
Eξ=6×0.16+7×0.14+8×0.42+9×0.1+10×0.18=8.(7分)
Dξ=(6-8)2×0.16+(7-8)2×0.14+(8-8)2×0.42+(9-8)2×0.1+(10-8)2×0.18=1.6(8分)
又Eη=6×0.19+7×0.24+8×0.12+9×0.28+10×0.17=8.(9分)
Dη=(6-8)2×0.19+(7-8)2×0.24+(8-8)2×0.12+(9-8)2×0.28+(10-8)2×0.17=1.96(10分)
因为Eξ=Eη,Dξ<Dη,
所以甲、乙两运动员射击成绩的均值相等,
但甲射击成绩的稳定性比乙要好,故选派甲参加比赛较合适.(12分)
练习册系列答案
相关题目