题目内容

(13分)已知,数列满足

      (Ⅰ)求证:数列是等比数列;

(Ⅱ)当n取何值时,取最大值,并求出最大值;

(III)若对任意恒成立,求实数的取值范围.

解析:(I)∵

        ∴

        即

        又,可知对任何

所以.……………………………2分

        ∵

      ∴是以为首项,公比为的等比数列.………4分

    (II)由(I)可知=  ().

        ∴

        .……………………………5分

         当n=7时,

         当n<7时,

         当n>7时,

∴当n=7或n=8时,取最大值,最大值为.……8分

  (III)由,得       (*)

        依题意(*)式对任意恒成立,

        ①当t=0时,(*)式显然不成立,因此t=0不合题意.…………9分

     ②当t<0时,由,可知).

      而当m是偶数时,因此t<0不合题意.…………10分

     ③当t>0时,由),

 ∴.    ()……11分

      设     (

      ∵ =,

      ∴

      ∴的最大值为

      所以实数的取值范围是.…………………………………13分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网