题目内容

已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,
(1)试判断l1与l2是否平行;
(2)l1⊥l2时,求a的值.
(1)a=-1时,l1∥l2(2)a=
(1)方法一 当a=1时,l1:x+2y+6=0,
l2:x=0,l1不平行于l2;
当a=0时,l1:y=-3,
l2:x-y-1=0,l1不平行于l2;                                                     
当a≠1且a≠0时,两直线可化为
l1:y=--3,l2:y=-(a+1),
l1∥l2解得a="-1,                                               "  
综上可知,a=-1时,l1∥l2,否则l1与l2不平行.                                       
方法二 由A1B2-A2B1=0,得a(a-1)-1×2=0,
由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,                                              
∴l1∥l2                                                               
a="-1,                   "                                   
故当a=-1时,l1∥l2,否则l1与l2不平行.                                       
(2)方法一 当a=1时,l1:x+2y+6=0,l2:x=0,
l1与l2不垂直,故a=1不成立.                                                   当a≠1时,l1:y=-x-3,
l2:y=-(a+1),                                                             由·=-1a=.                                                       
方法二 由A1A2+B1B2=0,得a+2(a-1)=0a=.                                   
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网