题目内容

的两个非空子集,如果存在一个从的函数满足:(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下4对集合.①;②;③;④,其中,“保序同构”的集合对的对应的序号是      (写出所有“保序同构”的集合对的对应的序号).

②③④.

解析试题分析:“保序同构”的集合是指存在一函数满足:(1).S是的定义域,T是值域,(2). 在S上递增.对于①,若任意,当时,可能有,不是恒有成立,所以①中的两个集合不一定是保序同构,对于②,取符合保序同构定义,对于③,取函数符合保序同构定义,对于④,取符合保序同构定义,故选②③④.
考点:新概念信息题,单调函数的概念,蕴含映射思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网