题目内容
(本题分12分)
定义.
(Ⅰ)求曲线与直线垂直的切线方程;
(Ⅱ)若存在实数使曲线在点处的切线斜率为,且,求实数的取值范围.
(1). (2) 。
【解析】本试题主要是考查了导数的几何意义的运用,以及运用导数求解函数的最值问题的综合运用。
(1)因为所求曲线的切线与直线垂直,故令
得得到,进而得到切线方程。
(2)函数
令,得
因切点为,故有,构造函数利用导数求解不等式转化为在上有解来解决。
解:(1)函数,
依题意令①, -------------------------2分
因为所求曲线的切线与直线垂直,故令
得②,由①②知应取,得,切点为,
所求切线方程是,即.------------------4分
(2)函数
令,得
因切点为,故有-----------------6分
又,依题意有
所以
即---------------------8分
该不等式在上有解,即在上有解,
转化为在上有解,-------- -------------10分
令,则,在上恒有
所以函数是上的减函数,
其最大值为,所以实数的取值范围是--------------12分
(本题满分12分)某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:
付款方式 | 分l期 | 分2期 | 分3期 | 分4期 | 分5期 |
频数 | 40 | 20 | a | 10 | b |
(Ⅰ)求上表中a,b的值
(Ⅱ)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有l位采用3期付款”的概率P(A)
(Ⅲ)求的分布列及数学期望
(本题满分12分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
数学 成绩 |
95 |
75 |
80 |
94 |
92 |
65 |
67 |
84 |
98 |
71 |
67 |
93 |
64 |
78 |
77 |
90 |
57 |
83 |
72 |
83 |
物理 成绩 |
90 |
63 |
72 |
87 |
91 |
71 |
58 |
82 |
93 |
81 |
77 |
82 |
48 |
85 |
69 |
91 |
61 |
84 |
78 |
86 |
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
|
数学成绩优秀 |
数学成绩不优秀 |
合 计 |
物理成绩优秀 |
|
|
|
物理成绩不优秀 |
|
|
|
合 计 |
|
|
20 |
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据及公式:
①随机变量,其中为样本容量;
②独立检验随机变量的临界值参考表:
0.010 |
0.005 |
0.001 |
|
6.635 |
7.879 |
10.828 |