题目内容

已知向量
a
=(2cos2x,
3)
b
=(1,sin2x)
,函数f(x)=
a
b
g(x)=
b
2

(1)求函数g(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(c)=3,c=1,ab=2
3
,且a>b,求a,b的值.
分析:(1)根据向量的数量积表示出函数g(x)的解析式,然后根据余弦函数的二倍角公式降幂化为y=Acos(wx+ρ)的形式,根据T=
w
可得答案.
(2)先根据向量的数量积表示出函数f(x)的解析式,然后化简为y=Asin(wx+ρ)的形式,将C代入函数f(x),根据f(c)=3求出C的值,再由余弦定理可求出a,b的值.
解答:解:(Ⅰ)g(x)=
b
2
=1+sin22x=1+
1-cos4x
2
=-
1
2
cos4x+
3
2

∴函数g(x)的最小周期T=
4
=
π
2

(Ⅱ)f(x)=
a
b
=(2cos2x,
3
)•(1,sin2x)
=2cos2x+
3
sin2x

=cos2x+1+
3
sin2x=2sin(2x+
π
6
)+1
f(C)=2sin(2C+
π
6
)+1=3∴sin(2C+
π
6
)=1
∵C是三角形内角∴2C+
π
6
∈(
π
6
13π
6
)
,∴2C+
π
6
=
π
2
即:C=
π
6

∴cosC=
b2+a2-c2
2ab
=
3
2
即:a2+b2=7
将ab=2
3
可得:a2+
12
a2
=7
解之得:a2=3或4
∴a=
3
或2∴b=2或
3
,∵a>b,∴a=2 b=
3
点评:本题主要考查三角函数最小正周期的求法和余弦定理的应用.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网