题目内容

已知关于x的函数f(x)=x2+2(m-1)x+2m+6.
(Ⅰ)当函数图象经过点(0,1)时,求f(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,试证明函数有两个不相等的零点,且分别在区间(0,1)和(6,7)内.

解:(Ⅰ)当函数图象经过点(0,1)时,必有f(0)=2m+6=1,
解得m=,故f(x)的解析式为f(x)=x2-7x+1;
(Ⅱ)由(Ⅰ)可得f(x)=x2-7x+1,
∵△=(-7)2-4=45>0,∴方程x2-7x+1=0有两个不相等的实根,
∴函数f(x)=x2-7x+1有两个不相等的零点,
又因为f(0)=1,f(1)=-5,f(6)=-5,f(7)=1
所以f(0)•f(1)<0,f(,6)•f(7)<0,
由零点的存在性定理可得:函数的零点分别在区间(0,1)和(6,7)内.
分析:(Ⅰ)由f(0)=1,可建立关于m的方程,解之即可得f(x)的解析式;(Ⅱ)由△>0,可得函数有两个不相等的零点,再由零点的判断定理可得他们分别在区间(0,1)和(6,7)内.
点评:本题考查函数零点的判断定理,涉及函数解析式的求解,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网