题目内容
19(本小题满分14分)已知f(x)=2x-1的反函数为(x),g(x)=log4(3x+1).(1)若f-1(x)≤g(x),求x的取值范围D;(2)设函数H(x)=g(x)-
(x),当x∈D时,求函数H(x)的值域.
(Ⅰ) D=[0,1] (Ⅱ) [0,]
解析:
:(Ⅰ)∵∴
(x>-1)
由≤g(x) ∴
解得0≤x≤1 ∴D=[0,1]
(Ⅱ)H(x)=g(x)-
∵0≤x≤1 ∴1≤3-≤2∴0≤H(x)≤
∴H(x)的值域为[0,
]
![](http://thumb.zyjl.cn/images/loading.gif)
(本小题满分14分)
某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
序 号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高x(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
脚长y( 码 ) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
序 号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
身高x(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
脚长y( 码 ) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的联列表:
高 个 | 非高个 | 合 计 | |
大 脚 | |||
非大脚 | 12 | ||
合 计 | 20 |
(Ⅱ)根据题(1)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:
①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.