题目内容

如图2-5-19,已知PA为⊙O的切线,PO交⊙O于点B,BCPA于点C,交⊙O于点D,

图2-5-19

(1)求证:AB2=PB·BD.

(2)若PA =15,PB =5,求BD的长.

思路分析:(1)只需证△PBA∽△ABD.?

(2)在(1)的基础上,只需求AB,因此寻找ABBE的关系式,这可以通过相似三角形和勾股定理达到目的.

(1)证明:连结AD,延长PO交⊙OE,连结AE.?

BCPA,∴∠P +∠PBC =90°.?

BE为直径,?

∴∠BAE =90°,∠BAD +DAE =90°.?

∵∠DAE =∠DBE =∠PBC,∴∠P =∠BAD.?

又∵∠PAB =∠ADB,∴△PBA∽△ABD.?

=,即AB2 =PB·BD.

(2)解:∵PA为切线,∴PA2=PB·PE.?

PA =15,PB =5,∴PE =45.?

BE =40.?

∵△PBA∽△PAE,∴= ==.?

AB =x,则AE =3x.

AB2+AE2=BE2,?

x2+(3x)2=1 600,解得x2=160.?

代入AB2=PB·BD,得BD=32.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网