题目内容
如图2-5-19,已知PA为⊙O的切线,PO交⊙O于点B,BC⊥PA于点C,交⊙O于点D,图2-5-19
(1)求证:AB2=PB·BD.
(2)若PA =15,PB =5,求BD的长.
思路分析:(1)只需证△PBA∽△ABD.?
(2)在(1)的基础上,只需求AB,因此寻找AB与BE的关系式,这可以通过相似三角形和勾股定理达到目的.
(1)证明:连结AD,延长PO交⊙O于E,连结AE.?
∵BC⊥PA,∴∠P +∠PBC =90°.?
∵BE为直径,?
∴∠BAE =90°,∠BAD +DAE =90°.?
∵∠DAE =∠DBE =∠PBC,∴∠P =∠BAD.?
又∵∠PAB =∠ADB,∴△PBA∽△ABD.?
∴=,即AB2 =PB·BD.
(2)解:∵PA为切线,∴PA2=PB·PE.?
又PA =15,PB =5,∴PE =45.?
∴BE =40.?
∵△PBA∽△PAE,∴= ==.?
设AB =x,则AE =3x.
又AB2+AE2=BE2,?
∴x2+(3x)2=1 600,解得x2=160.?
代入AB2=PB·BD,得BD=32.
练习册系列答案
相关题目