题目内容
若正数满足,求证≥
当且仅当时,等号成立
见解析
=
==
=++++++
≥=
当且仅当===,即时,等号成立
(本小题满分14分)若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列是调和数列,对于各项都是正数的数列,满足.(Ⅰ)求证:数列是等比数列;(Ⅱ)把数列中所有项按如图所示的规律排成一个三角形数表,当时,求第行各数的和;(Ⅲ)对于(Ⅱ)中的数列,若数列满足,求证:数列为等差数列.
已知函数.
(Ⅰ)当时,函数取得极大值,求实数的值;
(Ⅱ)已知结论:若函数在区间内存在导数,则存在
,使得. 试用这个结论证明:若函数
(其中),则对任意,都有;
(Ⅲ)已知正数满足,求证:对任意的实数,若时,都
有.
(本题满分14分)已知函数.
(Ⅱ)已知结论:若函数在区间内存在导数,则存在,使得. 试用这个结论证明:若函数(其中),则对任意,都有;
(Ⅲ)已知正数满足,求证:对任意的实数,若时,都有.
(12分)已知函数,R.
(Ⅰ)若正数满足,证明:、至少有一个不小于零;
(Ⅱ)若、为不相等的正数,且满足,求证:.