题目内容

(2011•浙江模拟)设F1,F2是椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦点,A、B分别为其左顶点和上顶点,△BF1F2是面积为
3
的正三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点F2的直线l交椭圆C于M,N两点,直线AM、AN分别与已知直线x=4交于点P和Q,试探究以线段PQ为直径的圆与直线l的位置关系.
分析:(Ⅰ)由△BF1F2是面积为
3
的正三角形,知
3
4
(2c) 2
=
3
,c=1,由此能求出椭圆C的方程.
(Ⅱ)设直线l方程为:x=my+1,M(x1,y1),N(x2,y2),由
3x2+4y2=12
x=my+1
,得(3m2+4)y2+6my-9=0,
再由韦达定理和点到直线的距离公式结合题设条件进行求解.
解答:解:(Ⅰ)∵△BF1F2是面积为
3
的正三角形,
3
4
(2c) 2
=
3
,c=1,
b=
3
2
×2c
,b=
3

∴a2=4,
∴椭圆C的方程为
x2
4
+
y2
3
=1

(Ⅱ)根据题意可知,直线l斜率不为0,
设直线l方程为:x=my+1,
M(x1,y1),N(x2,y2),
3x2+4y2=12
x=my+1
,得
(3m2+4)y2+6my-9=0,
y1+y2=
-6m
3m2+4
y1y2=
-9
3m2+4

设点P(4,yP),Q(4,yQ),
∵A,M,P三点共线,由
AM
=(my1+3,y1)
AP
=(6,yP)
得,yP=
6y1
my1+3

同理,yQ=
6y2
my2+3
…..(10分)
线段PQ的中点D(4,
yP+yQ
2
)
即(4,-3m),
则D到直线l的距离为d=3
m2+1
….(12分)
以PQ为直径的圆的半径 r=
1
2
|yP-yQ|=|
3y1
my1+3
-
3y2
my2+3
|=|
9(y1-y2)
(my1+3)(my2+3)
|
|
9
(y1+y2)2-4y1y2
m2y1y2+3m(y1+y2)+9
|=|
9
(
-6m
3m2+4
)
2
+
36
3m2+4
-9m2
3m2+4
+
-18m2
3m2+4
+9
|=3
m2+1
…..(14分)

因为d=r,所以,以PQ为直径的圆与直线l相切.….(15分)
点评:通过几何量的转化考查用待定系数法求曲线方程的能力,通过直线与圆锥曲线的位置关系处理,考查学生的运算能力.通过向量与几何问题的综合,考查学生分析转化问题的能力,探究研究问题的能力,并体现了合理消元,设而不解的代数变形的思想.本题综合性强,是高考的重点,易错点是知识体系不牢固.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网